

Science Revision Strategies

- FOLLOW A PLAN!
- START NOW!

What to expect

AQA COMBINED SCIENCE

- 6 X 70 mark papers = 420 Marks
- 2 Biology
- 2 Chemistry
- 2 Physics
- 2 GCSE's

Combined Double Grade 9.9 to 1.1

AQA SEPARATE SCIENCES

- 6 X 100 Mark papers
- 2 Biology
- 2 Chemistry
- 2 Physics
- 3 GCSE's
- 3 Separate grades 9 to 1

Higher or Foundation

Higher

Grades 9 to 4

Foundation

Grades 5 to 1

A grade 4 is classed by the government as a pass and a grade 5 as a good pass.

To study at A-level you would need a grade 6/7.

All students WILL receive an equation sheet for GCSE Physics in 2025.

Skills breakdown of each paper

40% Knowledge

40% Application of knowledge

20% Data analysis

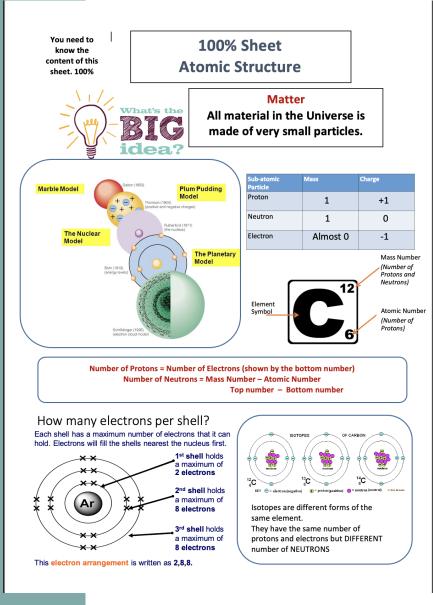
You need to learn the facts and definitions

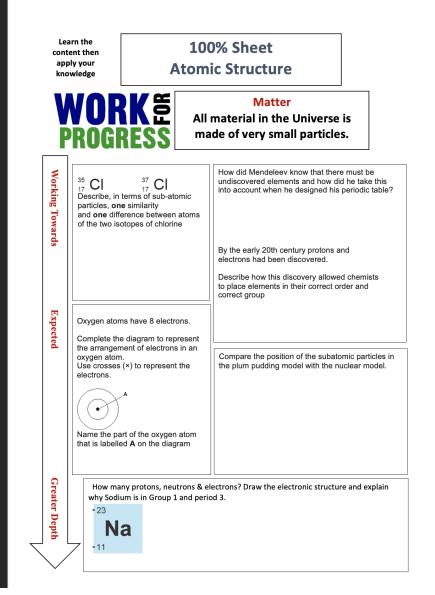
We will practice the skills of applying your knowledge and analysing data.

You cannot apply anything you do not know!

Teams Resources

Documents > General > Class Materials \bigcirc > Chemistry Complete Course and Revision Dr Griffiths


Name 🗸	Modified \checkmark	Modified By \checkmark
Lesson presentations Paper 1	September 30	Griffiths G
Lesson presentations Paper 2	September 30	Griffiths G
Topics for revision or if absent	September 30	Griffiths G


Topic-by-topic revision resources that focus on knowledge and application of knowledge

Documents 🗧 General 🗧 Class Materials 🖘 🗧 Chemistry Complete Course and Revision Dr Griffiths 🍃 Topics for revision or if absent 🗧

	\Box	Name 🗸		Modified \checkmark	Modified By \backsim	$+$ Add column \smallsetminus
\bigcirc	W	100 % Atomic Structure.docx	Ē	 September 30	Griffiths G	
	W	100 % Atomic Structure.docx 100% Periodic Table.docx		September 30	Griffiths G	
	PF	Atomic Structure and Periodic Table Cram.pptx		September 30	Griffiths G	
	PF	Atomic Structure and Periodic Table FlashCards.pptx		September 30	Griffiths G	
	W	Atomic Structure Checklist.docx		September 30	Griffiths G	
	PF	Atomic Structure Comprehension Sheet.pptx		September 30	Griffiths G	
	W	Checklist Chemistry paper 1.docx		September 30	Griffiths G	
	W	Overview - Atomic Structure and the Periodic Table.de	осх	September 30	Griffiths G	
		S_NS_09 - what is the periodic table.mp4		September 30	Griffiths G	

100% Sheets

Essential Learning Lists

All the essential facts for a topic on 1 piece of paper. Ideal for self testing or for others to test

Essential Learning List - Using Resources

A resource used for fuel or manufacturing that will run out
Development that meets the needs of the present, without
compromising the ability of future generations to meet
their own needs
Water that is not pure but is safe to drink
Process of boiling water to separate the salt from sea water
Use of chlorine or ozone to kill microbes in water
Used to remove solids from water
pH=7 (Green with UI) No residue after evaporation. Will
boil at exactly 100C
pH=6 (yellow with UI). Solid white salts after evaporation
pH=8 (purple with UI). Solid white salts after evaporation
pH=5 (Orange with UI). No solids after evaporation
Screening & grit removal. Sedimentation. Anaerobic
digestion of sludge. Aerobic biological treatment of water.
Sterilisation.

Topic Checklists

Paper 1 Atomic Structure & periodic table Learning Objective	Red	Amber	Green
Define the key terms "Element", "Compound" and Mixture			
Write chemical formulae for compounds and identify how many elements/atoms they contain.			
Write word and symbol equations for chemical reactions			
Balance symbol equations for chemical reactions			
Explain the methods of separating mixtures including filtration, crystallization, simple distillation, and chromatography.			
Describe how the model of the atom was developed from experimental evidence including: - How the scattering experiment led to a change in the atomic model. - The difference between the plum pudding and nuclear model of the atom.			
Describe the model of the atom in terms of subatomic particles (protons, neutrons and electrons).			
Give the relative mass and relative charge for each subatomic particle.			
Calculate the number of protons, neutrons and electrons in an atom of an element from its mass number and atomic number.			
Explain why atoms have no overall electrical charge.			
Describe the similarities and differences between isotopes of an element in terms of subatomic particles.			

Topic Flashcards

- Use on your phone.
- Write or recite answers until you know it all.
- Tick off the section on your checklist

100 % Atomic Structure.docx	September 30	Griffiths G
100% Periodic Table.docx	September 30	Griffiths G
Atomic Structure and Periodic Table Cram.pptx	September 30	Griffiths G
Atomic Structure and Periodic Table FlashCards.pptx	September 30	Griffiths G
Atomic Structure Checklist.docx	September 30	Griffiths G

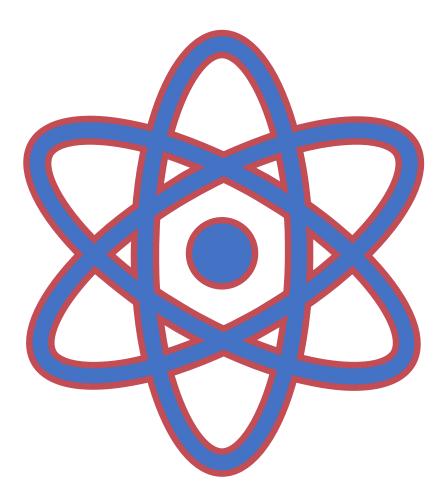
Online resources:

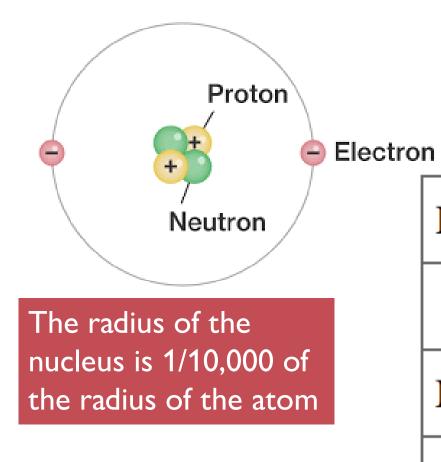
- Seneca Learning
- BBC Bitesize (select the correct course!)
- Kuizical
- Isaac Physics

WHAT ARE THESE DEFINITIONS?

ELEMENT COMPOUND MIXTURE

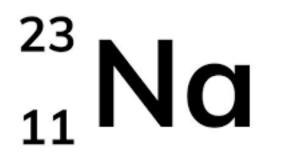
An element is made from only 1 type of atom




A compound is 2 or more different atoms chemically bonded together

A mixture is 2 or more different elements or compounds NOT chemically bonded together. State the mass and charge of the sub-atomic particles,

- Proton
- Neutron
- Electron

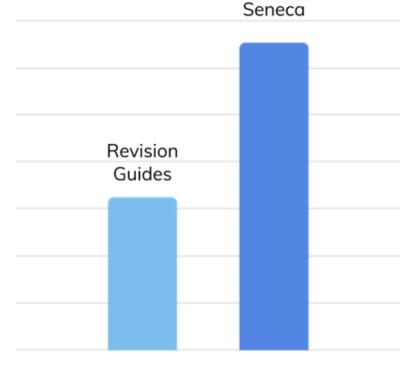


Protons, Neutrons, and Electrons			
	Charge	Mass (amu)	Location
Proton	+1	1	nucleus
Neutron	0	1	nucleus
Electron	-1	Almost 0	orbitals

• How do you calculate the numbers of each sub-atomic particle (protons, neutrons and electrons) in an atom?

Na

- The number of protons and electrons are given by the bottom number The atomic number
- The number of neutrons is calculated by top number bottom number (Mass Atomic number)
- For Sodium this would be,
 - 11 protons
 - 11 electrons
 - 23 11 = 12 neutrons


In any atom the numbers of positive protons is always equal to the negative electrons as all atoms are neutral in charge

Revision homework's on the <u>Seneca Learning App</u> Students can also access any topic at any time as part of their revision

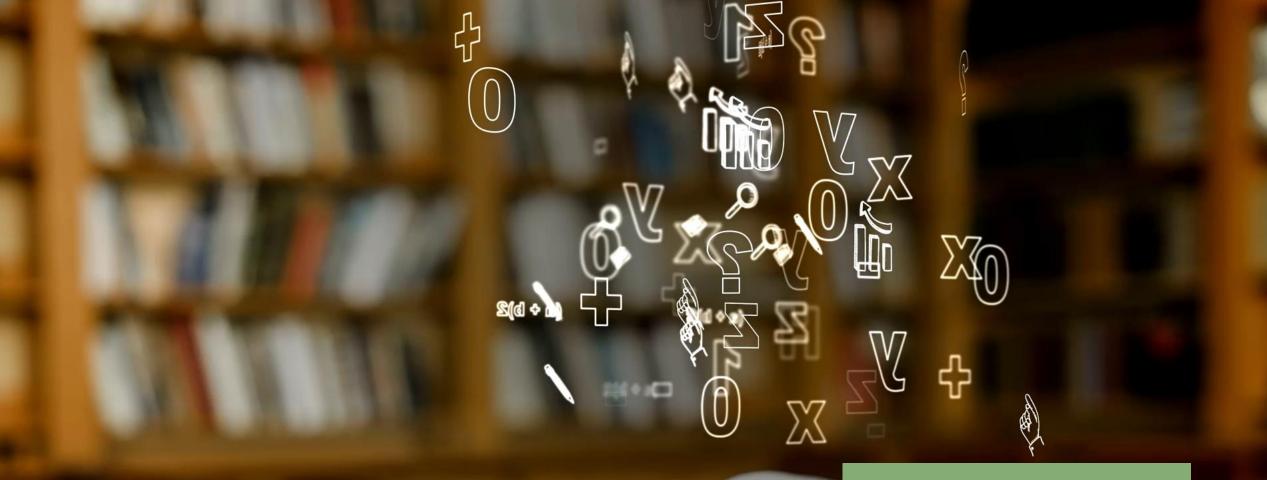
Proven to make you learn 2x faster

Our smart learning algorithms <u>are proven</u> to make you **remember topics better**. If you get a question wrong, we'll show you the content again but in a different format. We'll even do it at a time when it's optimal for you to learn it. We've also hand-selected the best GIFs and memes on the internet so revision **makes you laugh instead of stressed**.

Get started free

Exam Scores

Parents can access this



- Seneca is an online learning platform used in Schools
- The free parent platform allows you to monitor your child's progress
- To sign up simply scan the QR code with your phone camera or go to <u>senecalearning.com/signup</u>
- Once you have signed up connect your account to your child's

Detailed revision plans with hyperlinks to resources

Date	Focus		Higher and Separate students must know everything in the preceding columns Content					
10 th Jan	C6 Reversible	Essential	Learn the definition of a dynamic equilibrium and recognise the symbol for it.					
	Reactions		Know that to alter the direction of a reversible reaction you use conditions that are the direct opposite of the					
			original direction					
		Go deeper	Higher - Know how to apply Le Chatelier's principle to alter the equilibrium of a reaction by altering temperature,					
			concentration or pressure. Be able to explain your answers.					
		Resources	Teams / Revision / Chemistry / Paper 2 / C6 Rate and Extent of Reactions / Reversible reactions					
			https://www.bbc.co.uk/bitesize/guides/z32bpbk/revision/1					
		Check your understanding	https://forms.gle/Wz8EV1cqZrKpwJ6q8 https://forms.gle/FbaTZ9q1eaYa7NwUA					
17 th Jan	an C6 Rates of Reaction	of Essential	Be able to explain why all reactions start fast, slow down and then stop.					
			Be able to describe and explain how increasing the temperature, pressure, surface area, concentration of reactants					
			or using a catalyst increases the rate of a reaction.					
			Required Practical. Be able to describe how to measure the rate of a reaction after altering temperature or concentration in a valid way by explaining the use of controls in the experiment					
		Teams / Revision / Chemistry / Paper 2 / C6 Rate and Extent of Reactions / Rates of Reaction						
			https://www.bbc.co.uk/bitesize/guides/zpkp7p3/revision/1					
		Check your understanding	https://forms.gle/yXhiC2wyyTqdex7K6					
24 th Jan	^h Jan C6 Rates of Esser		Be able to calculate rates of reaction using the equation Change in amount of products / time or by calculating the					
	Reaction		gradient of a graph					
		Go deeper	Higher - Be able to calculate exact rate by drawing a tangent to a curve and calculating its gradient.					
		Resources	Teams / Revision / Chemistry / Paper 2 / C6 Rate and Extent of Reactions / Rates of Reaction					
			https://www.bbc.co.uk/bitesize/guides/zpkp7p3/revision/1					

Over to you - Get Learning and Memorising!

LITTLE AND OFTEN IS MUCH BETTER THAN A PANICKED LAST-MINUTE CRAM